Extensions 1→N→G→Q→1 with N=C46 and Q=C23

Direct product G=N×Q with N=C46 and Q=C23
dρLabelID
C23×C46368C2^3xC46368,42

Semidirect products G=N:Q with N=C46 and Q=C23
extensionφ:Q→Aut NdρLabelID
C46⋊C23 = C23×D23φ: C23/C22C2 ⊆ Aut C46184C46:C2^3368,41

Non-split extensions G=N.Q with N=C46 and Q=C23
extensionφ:Q→Aut NdρLabelID
C46.1C23 = C2×Dic46φ: C23/C22C2 ⊆ Aut C46368C46.1C2^3368,27
C46.2C23 = C2×C4×D23φ: C23/C22C2 ⊆ Aut C46184C46.2C2^3368,28
C46.3C23 = C2×D92φ: C23/C22C2 ⊆ Aut C46184C46.3C2^3368,29
C46.4C23 = D925C2φ: C23/C22C2 ⊆ Aut C461842C46.4C2^3368,30
C46.5C23 = D4×D23φ: C23/C22C2 ⊆ Aut C46924+C46.5C2^3368,31
C46.6C23 = D42D23φ: C23/C22C2 ⊆ Aut C461844-C46.6C2^3368,32
C46.7C23 = Q8×D23φ: C23/C22C2 ⊆ Aut C461844-C46.7C2^3368,33
C46.8C23 = D92⋊C2φ: C23/C22C2 ⊆ Aut C461844+C46.8C2^3368,34
C46.9C23 = C22×Dic23φ: C23/C22C2 ⊆ Aut C46368C46.9C2^3368,35
C46.10C23 = C2×C23⋊D4φ: C23/C22C2 ⊆ Aut C46184C46.10C2^3368,36
C46.11C23 = D4×C46central extension (φ=1)184C46.11C2^3368,38
C46.12C23 = Q8×C46central extension (φ=1)368C46.12C2^3368,39
C46.13C23 = C4○D4×C23central extension (φ=1)1842C46.13C2^3368,40

׿
×
𝔽